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Abstract:  
Topological defects (TDs) in liquid crystals may have their locations experimentally al-
tered by locally distorting the liquid crystalline (LC) order, e.g., by the melting induced by 
optical tweezers. In this research, we investigated the nematic ordering profiles and ac-
companying topological defect configurations in thin nematic liquid crystalline shells that 
are subject to externally forced local LC order distortions. We show that inside curved LC 
films these manipulations are greatly influenced by local Gaussian curvature if it displays 
strong spatial variability. We use a mesoscopic model in which the curvature of the surface 
and the nematic order parameter tensor serve to explain the shell geometry and LC ori-
entational order. We demonstrate that TDs are rather tightly "glued" to a local Gaussian 
curvature on increasing the prolateness of shells. 
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1. Introduction 

Localized deformations in a physical field known as topological defects (TDs) are pro-
tected by topology (Mermin, 1979) and are of interest to all branches of physics due to their 
interdisciplinary nature (Zurek, 1985). The topological charge of TDs is their essential 
property, which is conserved (Mermin, 1979; Volovik, et al. 1983), thus governing trans-
formations between different defect arrangements, such as merging and splitting 
(Svenšek, et al. 2004; Kralj, et al. 2017). Nematic liquid crystalline (LC) shells provide an 
ideal platform for studying the impact of topology and geometry on TDs (Nelson, 2002; 
Vitelli, et al. 2006; Skačej, et al. 2008; Lopez-Leon, et al. 2011; Rosso, et al. 2012). These shells 
are composed of thin nematic films that cover micrometer-sized colloidal objects and have 
a typical molecular length thickness. 
 
Anisotropic LC molecules, such as rod-like molecules, form the basis of the simplest ne-
matic LCs (Kleman, et al. 2003). These materials have both liquid-like properties and ori-
entational order, which is described at the mesoscopic level by the nematic director field 
�⃗⃗� , indicating the average molecular direction in the local region. Nematic shells are effec-
tively two-dimensional (2D) systems, with the �⃗⃗�  orientations confined within a curved 
2D film (Nelson, 2002), which generally results in the domination of topological defects 
(TDs) in such structures. 
 
Topological defects (TDs) in 2D nematic films are identified by their winding number 𝒎, 
which can take on half-integer values due to the ±�⃗⃗�  invariance. This number describes 
the number of rotations of �⃗⃗�  on encircling by any path the defect center counterclockwise. 
Defects with positive and negative values of 𝒎 are referred to as defects and antidefects, 
respectively (Poincaré, 1886; Kamien, 2002). 
 
Softness (strong responsivity to local stimuli) is a crucial feature of liquid crystals. Re-
searchers have demonstrated that nematic TDs can be efficiently manipulated using laser 
beams (Nych, et al. 2017; Tkalec, et al. 2011; Liu, et al. 2013; Smalyukh, 2020), as the beam 
can locally melt the orientational order. Since orientational order is melted also within the 
core of defects, it is advantageous for TDs to be assembled within regions where the ne-
matic order is reduced, as the penalty for forming the defect core is reduced. However, we 
demonstrate in this work that on effectively two-dimensional curved surfaces, the manip-
ulation of nematic TD positions by laser beams is limited as TDs are relatively strongly 
attached to a local Gaussian curvature. 
 
2. Methods  
We utilize mesoscopic modeling to characterize the shapes of two-dimensional curved sur-
faces and the nematic ordering within them, employing the curvature tensor 𝐶 and the 
nematic order tensor 𝑄  to describe the system's properties (Rosso, et al. 2012). The 
Weingarten curvature tensor 𝐶 determines the local surface curvature: 

𝐶 = 𝐶1 𝑒1⃗⃗  ⃗  ⊗ 𝑒1⃗⃗  ⃗ + 𝐶2𝑒2⃗⃗  ⃗ ⊗ 𝑒2⃗⃗  ⃗ , (1) 

where the unit vectors { 𝑒1⃗⃗  ⃗, 𝑒2⃗⃗  ⃗} are oriented along the surface principal directions exhib-
iting principal curvatures {𝐶1, 𝐶2}. The local mean curvature 𝐻 and the Gaussian curva-
ture 𝐾 can be calculated as: 

𝐻 ≔
𝑇𝑟[𝐶]

2
=

𝐶1+𝐶2

2
, 𝐾 ≔ 𝐷𝑒𝑡[𝐶] = 𝐶1𝐶2. (2) 

The local nematic orientational order on the surface is characterized by the two-dimen-
sional tensor order parameter 𝑄 (Kralj, et al. 2011). The molecules exhibiting orientational 
ordering are required to lie in the local tangent plane of the surface but are otherwise un-
restricted. We assume rod-like molecules with head-to-tail invariance. Tensor 𝑄 can be 
represented in diagonal form as follows (Kralj, et al. 2011): 

𝑄 = 𝜆(�⃗� ⊗ �⃗� − �⃗� ⊥ ⊗ �⃗� ⊥), (3) 

where �⃗�  and �⃗� ⊥  are its unit eigenvectors, while 𝜆 ∈ [0, 1/2]  and −𝜆  are the corre-
sponding eigenvalues. When 𝜆 is equal to zero, the system is in a locally isotropic state 
with no orientational order. In contrast, when 𝜆 is equal to 1/2, the system is in a locally 
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ordered state where the molecules are rigidly aligned in the direction of the nematic direc-
tor field �⃗� . 
 

The total free energy functional of the LC shell surface is given by 𝐹 = ∬𝑓d2𝑟, where the 
free energy density 𝑓 = 𝑓𝑐 + 𝑓𝑒 is the sum of the order condensation (𝑓𝑐) and elastic (𝑓𝑒) 
terms (Kralj, et al. 2011; Mesarec, et al. 2016). To illustrate the features of interest, we utilize 
a minimal model and express the nematic elasticity in terms of a single elastic constant 𝑘. 
The energy densities are expressed as 

𝑓𝑐 = −𝛼𝑇𝑟𝑄2 + 𝛽(𝑇𝑟𝑄2)2, (4a) 
  
𝑓𝑒 = 𝑘Tr((∇𝑠𝑄)2). (4b) 
 
Material constants 𝛼 and 𝛽 must take positive values to enable orientational ordering in 
the system. The order parameter correlation length 𝜉 , which depends on the material 
properties, is defined as 𝜉 = √𝑘/|𝛼|. This parameter estimates the distance at which a local 
perturbation in the order parameter relaxes on a flat surface. We introduce 𝑅 as the radius 
of the sphere with the same surface area as the surface area of the investigated shell. The 
bulk equilibrium value of the order parameter in flat geometries is 𝜆0 = √𝛼/𝛽/2. 
To model the laser beam, we implemented a boundary condition that locally melts the 
orientational order. We enforce the melting process by setting 𝜆 = 0 at certain points, 
while calculating the orientational ordering by minimizing the total free energy at all other 
points. 

3. Results 

We are studying how to manipulate topological defects (TDs) in nematic shells using laser-
induced local distortions, which cause the nematic order to melt locally (Mesarec, et al. 
2022). In our simulations, we simulate these distortions by varying the position of a melted 
region within prolate shells. It is well-established that local melting attracts TDs in the ne-
matic phase (Nych, et al. 2017; Tkalec, et al. 2011; Liu, et al. 2013; Smalyukh, 2020), as both 
melting and TDs introduce a strong energy penalty. Since the core of a TD is essentially 
melted, the total energy penalty is generally reduced when the melted region and TD are 
in the same location. Therefore, we refer to a melted region as a distortion. 
We are examining prolate shells that have a distinct spatial dependency in their Gaussian 
curvature (Mesarec, et al. 2022). On such shells, topological defects (TDs) tend to be closely 
situated near the poles where Gaussian curvature has the highest value. In Figure 1a, we 
show that in the absence of distortion, TDs are found close to the poles. When a distortion 
is introduced near the lower pole, as shown in Figure 1b, we can observe manipulation of 
the relative position of the TDs in the lower part of the prolate shell. One TD remains fixed 
within the distortion while the other shifts based on the interaction between the defects 
and the local Gaussian curvature. The positions of the remaining two TDs remain un-
changed, indicating that their placement is mainly influenced by the local Gaussian curva-
ture and their mutual elastic repulsion (Mesarec, et al. 2022). Similar phenomenon occurs 
in Figure 1c, where a distortion is again introduced near the region with high Gaussian 
curvature but slightly higher than in Figure 1b. If the distortion is moved outside of the 
area where the Gaussian curvature is high, the trapped defect is released and the defect 
configuration preferred by the Gaussian curvature is restored, as shown in Figure 1d. In 
this case, the distortion does not contain a topological defect (Mesarec, et al. 2022). 
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Figure 1. Equilibrium nematic ordering configurations on a prolate shell. Case without the laser beam (distortion) is pre-

sented in the panel (a), while panels (b,c,d) represent cases with different positions of the distortion (denoted by arrows). 

The shell shapes are presented with the superimposed nematic order parameter profiles 𝜆. 𝑅/𝜉 = 10. Partially adapted 

from (Mesarec L, et al. 2022). 

 

4. Discussion 

Our study focused on manipulating TDs in nematic shells with spherical topology. We 

simulated the effects of introducing a localized melted region, or distortion, on the spatial 

distribution of TDs. Our results show that the response to distortions depends on the spa-

tial dependence of the Gaussian curvature (Mesarec, et al. 2022). When the Gaussian cur-

vature has a strong dependence, e.g., on prolate shape, the distortion can affect the position 

of TDs near poles where Gaussian curvature is high, but it cannot move TDs to the regions 

with low Gaussian curvature because they are strongly attracted by the regions with high 

Gaussian curvature. Furthermore, introducing a distortion near a certain pole on a prolate 

shape does not affect the TD distribution on the opposite pole (Mesarec, et al. 2022). This 

ability to manipulate TDs opens opportunities for various applications, such as trapping 

nanoparticles within their cores (Kikuchi, et al. 2002; Karatairi, et al. 2010) and forming 

micron-sized crystal structures (Nelson, 2002). 
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