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Abstract:  
Basic natural entities seems to be physical fields. From this perspective elementary par-
ticles should correspond to robust localized field configurations. Most probable candi-
dates for such configurations are topological defects. They are topologically protected 
and they exhibit robust body-like features. Particularly adequate structures are line de-
fects which could display also linked or knotted configurations. Such structures could be 
relatively easily created, manipulated and observed in nematic liquid crystals. In this 
contribution we focus on nematic elementary line defects characterised by winding num-
ber |m|=½. We illustrate that they behave as line-like robust elastic objects. However, 
they could be reconfigured into qualitatively different conformations where topological 
conservation rules are obeyed. 
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1. Introduction 

Recent decades evidences that topology dominates natural behavior. It seems that key 
ideas introduced by Greeks and in particular by Einstein are correct: all fundamental laws 
of physics could be interpreted in terms of geometry. It might well be that all integers 
present in nature have a topological origin, i.e., they embody a topological invariant.  
Topology (Kamien, 2022) deals with systems’ properties which remain conserved in con-
tinuous geometrical or physical field transformations. These properties are reflected in 
topological invariants which are countable, discrete and conserved entities. Note that con-
served quantities form the foundation of our physical understanding of the world. Topo-
logical properties reflect a global system’s property, which is consequently robust and in 
general insensitive to local system’s configurational changes. For example, a topological 
equivalence relates a coffee cup (Fig. 1a) and a doughnut, i.e. torus (Fig. 1b): both have in 
common one hole. The latter represent the topological invariant g (the so called genus) 
where g=1 fingerprints the toroidal topology.   
  
Topological phenomena are relatively well understood in effectively two-dimensional 
(2D) manifolds (Singer, 1982) where mathematical treatment is relatively simple. Here 
manifold refers to a topological space, that is in general curved, that resembles Euclidian 
space near each point. Hence, n-dimensional curved manifold has a neighborhood that 
could be continuously morphed to the n-dimensional Euclidian space. For example, 
Gauss-Bonnet and Poincare-Hopf theorems (Kamien, 2022) relate the integrated Gaussian 
curvature of a closed 2D surface within a 3D system with the surface’s Euler characteristics 
𝜒 = 2(1 − 𝑔) and the total winding number 𝑚 of the ordering field within the manifold: 
𝜒 = 𝑚. Here m is the conserved topological invariant. It is also referred to as the 2D topo-
logical charge of topological defects (TDs) (Mermin, 1979) within the ordering field hosted 
by the 2D curved manifold. TDs refer to localized topologically protected distortions in a 
physical field. The key message conveyed by the theorems is illustrated in Fig. 1c, where 
the 2D manifold exhibits spherical geometry  (represented by g=0 and 𝜒 = 2) enforcing 
two m=1 point defects at the poles in the “axial” ordering field, where the total winding of 
the manifold equals to two. The two “charge one” point defects resemble point-like bodies. 
Note that the theorems can be generalized to other abstract (Ramirez and Skinner, 2020)   
2D manifolds (e.g., the 1st Brillouin zone surface in crystals). Furthermore, topological con-
cepts developed in 2D, where mathematics could be visualized, could be transferred to 
higher dimensional manifolds (Singer, 1982)  
 
Above listed theorems are at the heart of the quantum hall effect (Ramirez and Skinner, 
2020), representing one of the pioneering discoveries via which topology entered the world 
of physics, where it might soon become the “queen”. Namely, the recent discovery of the 
Higgs particle confirmed the existence of the Higgs field which supports the viewpoint 
that physical fields represent fundamental natural entities (Hobson, 2013). This perspec-
tive suggests that TDs might embody “particles” of the standard model of physics. Note 
that such vortex-type theory was first proposed by lord Kelvin (Thomson, 1867) who 
claimed that atoms (at that time atoms were treated as fundamental particles) are topolog-
ically protected knots in the respective physical field. Such simplest knot members are il-
lustrated in Figures 1d,e,f. Indeed, “tying a knot” is a metaphor for creating stability. Knots 
are sturdy in structure and tangled configurations persist much like a knot tied in a shoe-
lace. Along this line of reasoning Skyrme (1962) modelled structures of hadrons and me-
zons as soliton excitations in the pion-field, where he stabilized these excitations by im-
posing rather artificial constraints. Topologically related structures (the so called skyrmi-
ons) were afterwards predicted or even observed in several other systems, including 
Quantum Hall magnetism (Brey et al., 1995), Spinor Bose-Einstein condensates (Ho, 1998), 
helical ferromagnets (Rössle et al., 2006), LC Blue Phases (Meiboom et al, 1981) to mention 
few of them. A typical 2D skyrmion winding configuration of magnetic skyrmion is de-
picted in Figure 1g. Recent theoretical studies suggest that such 2D structures could be in 
3D twisted into complex linked and knotted objects. For example, Figure 1h illustrates a 
“nanoknot” in magnetization field ( Sutcliffe, 2017). Similar structures could be realised in 
optical vortex configuration (Shen et al., 2023). Related knotted and linked topologically 
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protected structures are present in diverse tube-like structures in nature and seem to be a 
generic feature of complex pattern close to phase transitions and at the edge-of chaos con-
ditions (Johnson, 2021). They appear at wide range of length scales, e.g., in the range 
10−10 − 10−6m in superfluid vortices, 10−2 − 102 m in fluid eddies and tornados, 106 −
1010 m in magnetic flux tubes in universe…  

 

Figure 1. A cup of coffee (a) is topologically equivalent to a torus (b). (c): A sphere hosting a vector 

field inevitably exhibits topological defects. (d), (e), (f): topologically different knots. (g): 2D skyr-

mion. (h): A knot in the magnetization vector field. 

 

   

Particularly adequate systems to carry out controlled and systematic studies of TDs are 

liquid crystals (LCs). They possess a unique and extraordinary combination of liquid char-

acter, crystalline order, softness (i.e. capability to exhibit strong responses even to weak 

local stimuli), complexity, and optical anisotropy. Owing to these features a rich diversity 

of TDs could be easily excited, stabilized, manipulated, and observed using relatively sim-

ple optic methods (e.g., using polarizing microscopy and laser tweezers). Consequently, 

LCs provide an excellent testbed system to reveal key features of TDs. Furthermore, TDs 
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in LCs could serve in various future applications, particularly in photonics and infor-

mation storage and manipulation. 

In this contribution we study configurational transformations of pairs of line defects in 

nematic LCs confined to a plane parallel cell. We illustrate that in general different recon-

figuration channels exist and consequently collided pairs of line defects could in general 

exhibit qualitatively different post-collision configurations. 

    
2. Methods  

 

Nematic LC phase exhibits long range uniaxial orientational order which is in bulk equi-

librium spatially homogeneously aligned along a symmetry breaking direction. At the 

mesoscopic level it is in general described by the tensor order parameter 𝑸. In terms of 

its eigenvectors �⃗� 𝒊 and eigenvalues 𝝀𝒊 it can be expressed as (Meiboom et al, 1981; 

Harkai et al., 2020) 

 

𝑸 = ∑ 𝝀𝒊(�⃗� 𝒊 ⊗ �⃗� 𝒊) .
𝟑
𝒊=𝟏                                                         (1)                                                        

                                                                                                                                   

This parametrization allows both uniaxial and biaxial states. In the former state. it is con-

ventionally expressed with the nematic director field �⃗⃗�  and the nemaic uniaxial order s 

as 𝑸 = 𝒔 (�⃗⃗� ⊗ �⃗⃗� −
𝟏

𝟑
𝑰). The unit vector �⃗⃗�  points along the local uniaxial direction where 

the states ±�⃗⃗�  are physically equivalent. Furthermore, the amplitude field 𝒔 ∈ [−
𝟏

𝟐
, 𝟏] 

determines the degree of anisotropic order, where s>0 (s<0) reflects prolate (oblate) uniax-

ial order. Biaxial states could be established at least locally if LC order is distorted. In our 

simulations, we express 𝑸 in the Cartesian coordinate frame (�⃗� 𝒙, �⃗� 𝒚, �⃗� 𝒛) as 𝑸 = (𝒒𝟏 +

𝒒𝟐)(�⃗� 𝒙 ⊗ �⃗� 𝒙) + (𝒒𝟏 − 𝒒𝟐)(�⃗� 𝒚 ⊗ �⃗� 𝒚) − 𝟐𝒒𝟏(�⃗� 𝒛 ⊗ �⃗� 𝒛) + 𝒒𝟑 ((�⃗� 𝒙 ⊗ �⃗� 𝒚) + (�⃗� 𝒚 ⊗ �⃗� 𝒙)) +

𝒒𝟒((�⃗� 𝒙 ⊗ �⃗� 𝒛) + (�⃗� 𝒛 ⊗ �⃗� 𝒙)) + 𝒒𝟓 ((�⃗� 𝒚 ⊗ �⃗� 𝒛) + (�⃗� 𝒛 ⊗ �⃗� 𝒚)).  Quantities { 𝒒𝟏, 𝒒𝟐, 𝒒𝟑, 𝒒𝟒, 𝒒𝟓 } 

are variational parameters. This parametrization allows both uniaxial and biaxial states.  

 

In our study we consider nematic order within a plane-parallel cell of thickness h. The 

identical confining plates are placed at z=0 and z=h. We prescribe orientational order at 

these plates. In practice this can be realized, e.g., using AFM scribing method. At the lat-

eral sides we impose the free boundary condition. Nematic order within the cell is calcu-

lated by minimizing the nematic free energy.  

 

The free energy 𝑭 of the system is determined by the integral of the free energy density 

over the LC body: 𝑭 = ∫𝒇𝒅𝟑𝒓, where (Meiboom et al., 1981; Harkai et al., 2020) 

 

𝒇 =
𝟏

𝟐
𝑨𝟎(𝑻 − 𝑻∗)𝐓𝐫 (𝑸𝟐) −

𝟏

𝟑
𝑩𝐓𝐫 (𝑸𝟑) +

𝟏

𝟒
𝑪𝐓𝐫 (𝑸𝟐)

𝟐

+
𝟏

𝟐
𝑳 |𝛁𝑸|

𝟐

 .                  (2) 

 

Quantities 𝑨𝟎, 𝑩, and 𝑪 are material constants, 𝑻∗ is the supercooling temperature of 

the isotropic phase, and 𝑳 is the representative nematic elastic constant in the single elas-

tic constant approximation. Note that we use the minimal model to simulate phenomena 

of our interest. 

 

We introduce the dimensionless temperature 𝒓 = (𝑻 − 𝑻∗)/(𝑻∗∗ − 𝑻∗), where 𝑻∗∗ = 𝑻∗ +

𝑩𝟐/(𝟐𝟒𝑨𝟎𝑪)  is the superheating temperature, introduce scaled order parameter �̃� =

𝑸/𝒔𝟎, where 𝒔𝟎 = 𝑩/(𝟒𝑪), and we scale distances with respect to cell thickness 𝒉. The 

resulting dimensionless free energy density reads (Harkai et al., 2020) 

 

�̃� =
𝒓

𝟔
𝐓𝐫 (�̃�𝟐) −

𝟐

𝟑
𝐓𝐫 (�̃�𝟑) +

𝟏

𝟖
𝐓𝐫 (�̃�𝟐)

𝟐

+ (
𝝃𝒃

𝒉
)
𝟐

|�̃��̃�|
𝟐

.                             (3)                                                                                                                                                                                                                                                                                                                                                                                                                                     
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Here 𝝃𝒃 = 𝟐√𝑳𝑪/𝑩 is the bare biaxial correlation length and �̃� = 𝒉𝛁. The minimization 

of the free energy is performed numerically deep inside the nematic phase, far below 𝑻∗.  

 

3. Results  

 

We analyse collisions of nematic line defects. 3D nematic LCs could display elementary 

line defects in orientational order (the so called disclinations) exhibiting winding number 

𝒎 = ±𝟏/𝟐. This quantity is a topological invariant and is in 2D LCs referred to as the 2D 

topological charge. It fingerprints the total reorientation of the principal 𝑸-eigenvector �⃗� 𝟏 

on encircling by any path the defect center counterclockwise. Note that for uniaxial states 

it holds �⃗⃗� = �⃗� 𝟏. Furthermore, one can assign to disclinations also a 3D topological charge 

q. It reflects number of realizations of all possible �⃗� 𝟏 orientations sampled on any surface 

enclosing the whole line defect. Note that in bulk line defects can only form closed loops. 

On the contrary, in confined geometries they could emanate and terminate on a LC-limit-

ing substrate. Elementary disclinations could exhibit either |𝒒|=1 or 0. In the former case 

the sign of the winding number does not change along the line defect. The far-field of such 

enclosed defect is distorted and is topologically equivalent to a point defect (monopol) 

exhibiting topological charge |𝒒|=1. Therefore, such defects could strongly interact with 

their surrounding objects which exhibit coupling with �⃗� 𝒊. On the other hand, chargeless 

disclinations, bearing q=0, could be surrounded by essentially spatially homogeneous ne-

matic structure. Hence, in general they weakly interact with their surrounding.                 

   

In our simulations we impose pairs of {m=1/2,m=-1/2} line defects, which are initially es-

sentially parallel, spanning the facing plates of the plane-parallel cell (see Fig. 2a). We en-

force such structures by enforcing at each plate a pair of {m=1/2,m=-1/2} 2D defects, which 

otherwise impose planar orientational ordering (i.e., the nematic director field within the 

plates is confined to the (x,y) planes at z=0 and z=h. The separation of surface point defects 

at the bounding surfaces is equal to r=h/2. Experimentally, such surface boundary condi-

tions could be realized by AFM scribing method (Harkai et al., 2020). At each plate the 

lines, designated by unit vectors �⃗� 𝟎 (at z=0) and �⃗� 𝒉 (at z=h) , connecting the centers of 2D 

neighbouring defects are initially aligned along �⃗� 𝒙 as shown in Figure 2a. We assume that 

the end-points of line defects are strongly attached to the surface-enforced defect nucle-

ating sites. Afterward we rotate the bottom connection line �⃗� 𝟎 for the azimuthal angle 𝜽. 

Figs 2b-2f illustrate representative stages on increasing 𝜽 from 𝜽 = 𝟎 to 𝜽 = 𝟐𝝅. In the 

1st stage the line defects become elongated, see Fig. 2b. Note that a disclination free energy 

penalty is for an isolated line defect linearly proportional to its length. To prevent mono-

tonically increasing total length 𝒍(𝒕𝒐𝒕) on increasing 𝜽 the facing disclinations exchange 

their segments. The reconfiguration process is depicted in Figures 2c-2d. At the critical 

angle 𝜽𝒄 = 𝟓𝝅/𝟒 an additional chargeless loop is formed within the (x,y) plane at z=h/2 

(Fig. 2d), which connects both disclinations running along the cell thickness. The latter two 

are also chargeless (i.e., their winding number switches its sign on crossing the mid-plane 

at z=h/2. Consequently, the total length of disclinations reaches the maximum at 𝜽𝒄 =

𝟓𝝅/𝟒 and on further increasing 𝜽 in the interval 𝜽 ∈ [𝝅, 𝟐𝝅] the total disclination length 

is monotonically decreasing, reaching the minimal length 𝒍(𝒕𝒐𝒕)~𝟐𝒉 at 𝜽 = 𝟐𝝅. The final 

configuration (Figure 2f) is identical to the initial configuration (Figure 2a). Therefore, the 

structural transformations exhibit periodic behaviour with the period 𝟐𝝅 on increasing 

𝜽. Such behaviour is realized in thick enough cells. 

 

Next, we analyse the rotation-imposed reconfiguration in a thinner cell where characteris-

tic stages are shown in Figures 3. On increasing 𝜽 the total length of disclinations in-

creases in the interval 𝜽 ∈ [𝟎, 𝜽𝒄], where a characteristic pattern is shown in Figure 3b. 

However, at 𝜽𝒄, the charged disclinations collide and rewire into two chargeless configu-

rations. The latter two connect the nearby surface-imposed 2D point defects. In order to 

reduce their length, they become relatively strongly confined to the bounding substrates, 
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see Figs. 3c and Fig. 2f. Therefore, the total length of dislination at 𝜽 = 𝟐𝝅 equals roughly 

𝒍(𝒕𝒐𝒕)~𝟐𝒉. Furthermore, 𝒍(𝒕𝒐𝒕) exhibit weak 𝒍(𝒕𝒐𝒕)(𝜽) dependence in the regime 𝜽 > 𝜽𝒄.  

  

              

 

 

Figure 2. Structural reconfiguration of {1/2,-1/2} topological line defects on increasing 𝜃 in thin 

cells. (a) Initial structure at 𝜃 = 0. b), (c), (d), (e): intermediate states on progressively increasing 

𝜃. (f): Final state reached following 𝜃 = 2𝜋 rotation.   

 

 

In this case the system does not exhibit periodic behaviour on increasing 𝜽. 

 

4. Discussion and conclusions 

 

We studied transformations of disclinations in nematic LCs, which correspond to line de-

fects in the molecular field. In a bulk equilibrium, the field exhibits spatially homogeneous 

uniaxial orientational order along a symmetry-breaking direction. The degeneracy of com-

peting equilibrium configurations enables the existence of topological defects. We focused 

on line defects. We stabilized them by appropriate surface boundary conditions. By rela-

tive rotation of confining plates, we enforced structural transformation of pairs of discli-

nations. We demonstrated that disclinations behave like elastic bodies that can recombine 

in different structures. In our study, the initial (non-rotated) structure possesses two 

charged disclinations exhibiting winding numbers m= -1/2 and m=1/2. The far field of such 

closed disclinations would resemble point defects bearing 3D topological charges q= -1 and 

q=1, respectively. Therefore, the total topological charge of the system equals zero. In ad-

dition, the total winding within each (x,y) plane equals zero. In our simulations, we 

demonstrated two qualitatively different rotation-driven reconfigurations of disclinations. 

In all cases the topological conservation rules were obeyed: i.e., each (x,y) plane and also 

the whole system were topologically neutral.   

 

Note that physics of TDs is strongly dominated by topology which is independent from 

system’s microscopic details. Therefore, lessons learned from detail studies in one system, 

which is experimentally accessible, might gain understanding on behaviour of TDs in sys-

tems, where experimental studies of TDs are difficult (e.g., study of cosmic strings in space-

time fabric). Our study reveals that interacting line defects in flat geometry could not form 
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complex knots as first suggested by Kelvin (see Figures 1d,e,f). However, more complex 

structures could be stabilised by including into the play geometrical curvature. For exam-

ple, in our setting this could be achieved by immersing a toroidal colloid into the nematic 

fluid, where the colloid’s surface would impose isotropic tangential anchoring (i.e., all ne-

matic director field orientations within the colloid’s surface are energetically equivalent). 

Namely, torus possesses surface regions exhibiting positive and negative Gaussian curva-
ture 𝑲𝒈. Recent studies in 2D curved manifolds (Mesarec et al., 2016) reveal that surface 

regions exhibiting 𝑲𝒈 > 𝟎 (𝑲𝒈 < 𝟎) attract TDs bearing m>0 (m<0). Therefore, one expects 

that chargeless loops, which possess both m>0 and m<0 segments could wind around torus 

geometry. We believe that by imposing strong enough excitations (for instance by switch-

ing on/off a strong enough AC external electric field, where one could vary the field am-

plitude and frequency) one could stabilize topologically different “torus knots”(Singer, 

1982). This is the goal of our future research activity.     

 

       
 

 

Figure 3. Structural reconfiguration of {1/2,-1/2} topological line defects on increasing 𝜃 in thick 

cells. (a) Initial structure at 𝜃 = 0. (b), (c): intermediate states on progressively increasing 𝜃. (d) Fi-

nal state reached following 𝜃 = 2𝜋 rotation. 
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