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Abstract: 

Open Science is, by definition, the transparent and accessible knowledge that is shared and de-

veloped through collaborative networks. It allows for broader availability of research data and 

speeds up the process of obtaining new knowledge. Open-source software has publicly available 

source code that anyone can inspect, modify, and enhance. This work focuses on the importance of 

Open Science practice and illustrates that on an example of cell membrane research. Cell mem-

branes are vital components of the cell as their structure and properties influence many important 

cellular functions. Due to their complicated composition, researchers use simpler structures that 

resemble the membrane, called unilamellar vesicles, especially giant unilamellar vesicles, due to 

their size. There are many methods for acquiring the vesicles using their main building blocks – 

phospholipids, electroformation being the most commonly used. In this work, an open-source 

sinusoidal voltage source designed for electroforming giant unilamellar vesicles will be presented 

as an alternative to expensive and impractical function generators. The device has been success-

fully used to produce vesicles from the phospholipid POPC (1-palmitoyl-2-oleoyl- 

sn-glycero-3-phosphocholine) and a mixture of POPC and cholesterol (4/1). 
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1. Introduction 

1.1. Open science 
Open Science is, by definition, the transparent and accessible knowledge that is 

shared and developed through collaborative networks. There are six fundamental prin-
ciples of open science, which include open methodology, open source, open data, open 
access, open peer review and open educational resources. Open science practice has many 
advantages. It allows for broader availability of research data and it also has the potential 
for speeding up the process of obtaining new knowledge (Vicente-Saez and Mar-
tinez-Fuentes, 2018). 

1.2. Open-source hardware and software 
The term open source refers to something that is freely available for modification and 

redistribution because its design is publicly accessible. It most commonly represents 
open-source software with source code that anyone can inspect, modify, and enhance. 
Open-source technology not only benefits computer programmers but practically every-
one –Linux kernel is one such example as its variations can be found on a wide range of 
devices ranging from smallest wearables, smart household appliances, personal comput-
ers to giant servers and supercomputers (Opensource.com, 2021). 

In a similar manner, open-source hardware adopts the open-source principles by 
making design specifications of a physical object (which include schematics, blueprints, 
logic designs) publicly available so that they can be studied, modified, created, and dis-
tributed by anyone. Preferably its components should be easy for anyone to obtain which 
reduces common barriers to the design and manufacture of physical goods. Arduino and 
Raspberry Pi are among the most renowned examples (Opensource.com, 2021). 

1.3. Scientific Computing 
Scientists are frequently presented with various tasks which include computation 

and managing large amounts of data. Instead of doing repetitive action by hand, scien-
tists utilize the help of computers and typically develop their own software for such 
purposes, as it requires significant domain-specific knowledge. The resulting software is 
often buggy and difficult to maintain since most are self-taught. In order to improve the 
quality of code, the subsequent practices are to be followed: improving the human 
readability of code (distinctive and consistent naming, formatting), automating work-
flows and repetitive tasks, making incremental changes (as well as using a version con-
trol system), reusing and modularizing code instead of rewriting it, planning for mis-
takes and optimizing it only after it works correctly, collaborating and documenting 
(Wilson et al., 2014). 

1.4. Cells and their membranes 
We chose the preparation of cell membrane substitutes in a laboratory as an example 

of what can be achieved by following the principles of open science and open-source 
software and hardware as well as best practices for scientific computing (Gazvoda de 
Reggi et al., 2021). 

Cells are the main building blocks of all living organisms. Their exterior and interior 
are separated by a thin layer called the cell membrane, through which substances pass 
into and out of the cell. The cell membrane is primarily composed of phospholipid mol-
ecules organized into a bilayer (Cevc and Marsh, 1987). It also consists of various inclu-
sions, such as different types of proteins, cholesterol and other biologically important 
building blocks that define cell’s function (Figure 1). 
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Figure 1. The cell membrane is a complex structure whose basic building block is a phospholipid bilayer. The two 

red-colored layers are composed of many polar phospholipid heads, while the yellow-colored area represents the 

non-polar tails of the phospholipid molecules (Wikipedia Contributors, 2021). 

The most important functions of a membrane are to protect the inside of the cell 
from external influences and to regulate the transport of substances in and out of the cell. 
The structure of the membrane thus determines the specific functions of the cell. In the 
interior of the cell, we also find membranes with a similar structure, which act as dividers 
between two subcellular compartments (e.g., membranes surrounding intracellular or-
ganelles) (Coskun and Simons, 2011). 

The study of cell membrane properties in a living cell model is challenging because 
membrane properties and functions are determined by multiple cellular mechanisms and 
a complex biological structure. As a result, simplified cell models are often used in re-
search. Liposomes ranging in size from 1–200 µm are also called giant unilamellar vesi-
cles (GUVs) and are commonly used cell substitute. They consist of a bilayer of phos-
pholipids which start to form lipid vesicles as a result of hydrophobic interactions in 
aqueous solution (Seifert, 1997; Safran, 1999; Nagle, 2013; Dimova, 2014). Due to their 
appropriate size, they can be directly observed under a light phase-contrast microscope. 
Typically, researchers isolate a vesicle or a small group, expose it to a change in its mi-
croenvironment and observe the differences over an extended period of time (Zupanc 
and Drobne, 2011; Stein et al., 2017; Penič et al., 2020). 

1.5. Preparation of phospholipid vesicles 
Several approaches are used to prepare giant unilamellar phospholipid vesicles, 

such as lipid film hydration, electroformation, lipid emulsification, microfluidic methods 
(hydrodynamic flow directing) and others (Pereno et al., 2017). A more detailed review of 
vesicle preparation methods is described in (Walde et al., 2010). 

Electroformation is the most commonly used process for preparing vesicles from 
phospholipid components in the laboratory as it is fast (1–3 hours on average) and effi-
cient. The method was first reported in 1986 (Angelova and Dimitrov, 1986). The pro-
posed electroformation process is carried out by applying a lipid solution to a platinum 
electrode. When the solvent evaporates, a lipid film forms on the electrodes. The elec-
trodes are transferred into an aqueous solution of sugar or salt and the alternating elec-
trical field between the electrodes stimulates and accelerates the lipid vesicle formation 
process.



Proceedings of 6th Socratic Lectures 2021               102 of 201 
 

 

 
1.6. Voltage source for electroformation 

A function generator is most commonly used as a sine wave AC voltage source. The 
electroformation of vesicles takes place in a weak electrical field (< 100 V/m), which, 
given the small distance between the electrodes, can be obtained at low voltages (1–5 V) 
and harmonically alternates with frequencies in the range of 1–10 Hz, allowing simpler, 
cheaper and smaller devices to be used for the process. That is why we chose to substitute 
the function generator with an affordable open-source AC voltage source alternative as a 
great example of applying Open Science principles. 

We used a microcontroller and a filtered PWM (pulse-width modulated) digital 
output. This allows for the complete electroforming protocol to be stored in the memory 
of the microcontroller and triggered at the push of a button and thus eliminating repeti-
tive action of needing to configure the source. 

An important part of this research involves the prototyping of the AC generator and 
the evaluation of the device’s performance. The circuit was built around the open-source 
Arduino microcontroller system. The circuit and the source code have been released 
under the MIT open-source license to promote wider adoption. In order to make the final 
product small and thus portable, easy to use and fully powered via the USB, we used 
only readily available and low-cost electronic components. The documentation for mak-
ing the AC source for electroformation is available on GitHub 
(https://github.com/umalavasic/electroformation). 

2. GUV electroformation protocol 
The protocol for the preparation of giant unilamellar vesicles is determined in ad-

vance to achieve reproducibility of the experimental results. In this section we will focus 
only on the part of the protocol that is directly related to the source of the electrical 
voltage between the electrodes, irrespective of the choice of lipids, solutions, type of 
electrodes and other factors.  

The standard electroformation protocol consists of three steps. In the first phase, the 
amplitude of the electrical field strength between the electrodes is gradually increased to 
a maximum value (typically 𝐸max < 100 V/m). This phase is followed by an optional vesi-
cle swelling phase, where the field amplitude is maintained at the maximum value for a 
certain time interval. This is followed by a final phase where we typically reduce the 
frequency and stimulate the phospholipid bilayer to assemble into spherical vesicles 
(Méléard et al., 2009). The shape of the electrodes, and particularly their distance from 
each other, are important factors in determining the voltage of the generator in order to 
achieve the correct electrical field strength in the solution. Voltage between the elec-
trodes, frequency and duration of each phase can have an overall effect on the size and 
mechanical properties of the formed vesicles (Drabik et al., 2018). 

The operating protocol can also be modified accordingly by adding or substituting 
different reagents, such as using a salt solution instead of sugar (Méléard et al., 2009). In 
applied research, the first two operational phases are usually combined into one (San-
thosh et al., 2020). 

In routine laboratory experiments, the electroformation process is most often carried 
out in aqueous glucose solutions. Our work follows the key steps described by Stein et al. 
(Stein et al., 2017). The two platinum wire electrodes with a diameter of ≈ 2 mm are 
spaced 5 mm apart. The operating parameters of the vesicle electroformation system are 
also given in Figure 2.

https://github.com/umalavasic/electroformation
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Figure 2. Typical electroformation protocol parameters. Red line describes time variance of frequency, and blue line the 

voltage of sinusoidal signal. 

A gradual decrease in the frequency and voltage of the electrical field causes the swollen 
lipid vesicles to slowly detach from the surface of the electrodes and remain free floating 
in solution. 

3. Generator circuit description 
Using the Arduino Uno microcontroller platform, we generated a PWM signal with 

a frequency of 31,4 kHz. The duty cycle was determined based on a pre-calculated table 
of sine values. The signal was filtered with a first-order low-pass filter that attenuated 
frequencies above 150 Hz to obtain the desired sinusoidal signal. The signal manipula-
tion circuit is shown in Figure 3. 

The output of the low-pass filter is connected to the non-inverting input of the op-
erational amplifier, which has been set to a gain of a factor of 2. The operational amplifier 
used is a Texas Instruments LM358, which has two units in a DIP-8 housing. The second 
unit was used as an inverting operational amplifier. Potentiometer RV1 was used to set 
the gain to a factor of 2,5 while potentiometer RV2 was used to set the offset voltage of 
the operational amplifier to prevent it from being saturated by the signal. 

Due to the single power supply of the operational amplifier, the electrodes were 
connected differentially between the outputs of the two operational amplifiers. 

The calibration was performed using an oscilloscope. First, we set the gain with po-
tentiometer RV1 so that when the maximum amplitude of the microcontroller output was 
set, we got a peak voltage of 10 Vpp between the output terminals, followed by cancella-
tion of the DC component of the voltage with potentiometer RV2. 

The operational amplifier was powered with a voltage of 15 V, which was obtained 
from the supply voltage of the Arduino microcontroller system using a boost converter. 
We used a module based on the SX1308 converter from Sunrom. 

The maximum achievable frequency at the output is limited to about 150 Hz and the 
voltage to 10 Vpp. The current capacity of the output is limited by the characteristic of the 
selected operational amplifier which is ≈ 40 mA. This does not pose a practical problem 
for a high-ohm load represented by a vial with electrodes and solution. 
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(a) (b) 

Figure 3. Circuit diagram (a) and a 3D graphic showing the board (b). 

4. Code execution flow 
The parameters for the execution of the vesicle preparation protocol (Figure 4) are 

stored on the device in an electrically erasable programmable read-only memory 
(EEPROM). After switching on the device, the colored LED lights up and turns light blue. 

Pressing the button starts the stored protocol and the LED turns purple. When the 
protocol is finished, the LED turns green. The protocol execution can be aborted during 
operation by pressing the button and the LED will turn red. A flow chart of the device 
operation is presented in Figure 4a. 

The last used protocol is persistently stored in the device’s memory and can be ed-
ited by connecting the device via USB to a computer and using an application developed 
in Python. The device receives the new instruction for protocol execution via the serial 
port at a baud rate of 115 200 Bd. The instruction consists of comma-separated electric 
field parameters, with the individual steps separated by semicolons. The beginning and 
the end of the instruction are delimited by the characters “<” and “>”. When accepted by 
the device, the old protocol is overwritten by the new one and the LED turns dark blue. A 
schematic of the implementation of the electroformation protocol is shown in Figure 4b. 

  

(a) (b) 

Figure 4. Flow chart of the device’s operation (a) and of the electroformation protocol (b).
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5. Results and conclusion 
The harmonic voltage source was tested in the laboratory, following the preparation 

instructions of reference (Stein et al., 2017). Giant phospholipid vesicles were first pre-
pared by electroformation from the synthetic lipid POPC (1-palmitoyl-2-oleoyl-sn- glyc-
ero-3-phosphocholine), and then from its mixture with cholesterol (both from Avanti 
Polar Lipids). On each platinum wire electrode, 20 µL of the above lipid diluted in a 2:1 
mixture of chloroform and methanol to a concentration of 1 mg/mL was applied by drop 
creep to the electrodes and dried in a desiccator for 45 min at constant vacuum. After 
drying, the electrodes were placed in a 2 mL plastic vial containing 1,8 mL of 0,3 M su-
crose solution. 

The electrodes were connected to the terminals of the harmonic voltage source and 
the procedure was started according to the protocol described in Section 2. After a total of 
165 min, the electrodes were disconnected and the contents of the vial were carefully 
transferred into 3,60 mL of 0,3 M glucose solution (the volume ratio of sucrose to glucose 
in the final mixture was 1:2). 200 µL of the suspension was pipetted into experimental 
chambers (manufactured by Grace Bio-Labs) which allow quantitative field analysis and 
uniform image capture under the microscope. The chambers were placed under the mi-
croscope and left for 30 minutes to allow the contents to settle to the bottom. A light mi-
croscope (Nikon Eclipse TE2000-S) was used to examine the samples using immersion oil 
at 100x magnification. 

Samples of giant phospholipid vesicles from both formations were captured with a 
microscope camera (model UI-3280CP from IDS Imaging). Figure 5a shows a vesicle 
whose membrane consists only of POPC phospholipid without added cholesterol, while 
Figure 5b shows a set of vesicles whose membranes contain a mixture of the two. The 
addition of cholesterol also results in a slightly thicker membrane, which is nicely high-
lighted by microscopy. 

  

(a) (b) 

Figure 5. A 100x magnification image of giant phospholipid vesicles. The images show membranes with POPC phos-

pholipid (a) and its 1:4 mixture with cholesterol (b). 

The amounts of vesicles formed in both formation cases were comparable to those 
obtained using a commercial function generator. The electroforming process does not 
require an exact sinusoidal waveform, so the signal construction using PWM modulation 

50 μm 
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is sufficient. The protocols reported in the literature even mention other signal wave-
forms. In his review article, Méléard mentions the use of an alternating source of either 
rectangular or sinusoidal form (Méléard et al., 2009), and under specific conditions cer-
tain authors (Breton et al., 2015) use protocols that combine both signals – sinusoidal and 
rectangular. 

The presented sinusoidal voltage generator of adjustable amplitude and frequency 
represents a portable and inexpensive solution for the electroformation of giant unila-
mellar vesicles. An additional advantage is the complete automation of the electrofor-
mation process and the ease of use of the generator, since the protocol steps are stored in 
memory and executed automatically in sequence, so that the device does not need to be 
reconfigured during the execution of the protocol. The generator does not need any ad-
ditional power supply, as it can be operated using the USB output of the computer. An 
additional benefit of the connection to the computer is the possibility to implement 
communication with the computer and to be informed via the Internet connection about 
the current status of the protocol execution. In order to make the generator available to a 
wider community, we have released the design and the software code under the MIT 
open-source license. 

We conclude that our research stands as an example of importance in practice of 
Open Science. By publishing source code and documenting the design openly and freely 
we simplify the work of other researchers and provide them with an affordable and 
open-source replacement for an expensive device. That not only makes their job easier 
but also, through collaboration, improves code quality as potential bugs can be identified 
earlier in the process. The code can also be modified to be applied for other projects that 
require voltage generation with similar parameters. 
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Appendix A: Firmware for Arduino 

// WAVEFORM 
#define WAVEFORM_PIN              11     // Don't change unless you also adjust timers and PWM 
        // frequency accordingly 
#define SIGNAL_VOLTAGE_AMPLITUDE  5     // [V] 
#define PROTOCOL_MAX_STAGES       10     // Currently set to accept 10 stages in single protocol 
 
// BUTTON 
#define BUTTON_IS_USED            true 
#define BUTTON_PIN                2 
#define BUTTON_PIN_MODE           INPUT_PULLUP   // change to INPUT when using external resistors 
 
// RGB LED 
#define RGB_LED_IS_USED           true 
#define RED_LIGHT_PIN             3 
#define GREEN_LIGHT_PIN           6 
#define BLUE_LIGHT_PIN            5 
 
// TIMER 
#define USE_TIMER_1               true 
#include <TimerInterrupt.h> 
#include <ISR_Timer.h> 
 
// EEPROM 
#include <EEPROM.h> 
 
// MARK: - Signal Generation 
const byte sineWave[] = { 
  128, 131, 134, 137, 140, 143, 146, 149, 152, 155, 158, 162, 165, 167, 170, 173, 176, 179, 182, 185, 188, 

190, 193, 196, 198, 201, 203, 206, 208, 211, 213, 215, 218, 220, 222, 224, 226, 228, 230, 232, 234, 
235, 237, 238, 240, 241, 243, 244, 245, 246, 248, 249, 250, 250, 251, 252, 253, 253, 254, 254, 254, 
255, 255, 255, 255, 255, 255, 255, 254, 254, 254, 253, 253, 252, 251, 250, 250, 249, 248, 246, 245, 
244, 243, 241, 240, 238, 237, 235, 234, 232, 230, 228, 226, 224, 222, 220, 218, 215, 213, 211, 208, 
206, 203, 201, 198, 196, 193, 190, 188, 185, 182, 179, 176, 173, 170, 167, 165, 162, 158, 155, 152, 
149, 146, 143, 140, 137, 134, 131, 128, 124, 121, 118, 115, 112, 109, 106, 103, 100, 97, 93, 90, 88, 
85, 82, 79, 76, 73, 70, 67, 65, 62, 59, 57, 54, 52, 49, 47, 44, 42, 40, 37, 35, 33, 31, 29, 27, 25, 
23, 21, 20, 18, 17, 15, 14, 12, 11, 10, 9, 7, 6, 5, 5, 4, 3, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 
1, 1, 2, 2, 3, 4, 5, 5, 6, 7, 9, 10, 11, 12, 14, 15, 17, 18, 20, 21, 23, 25, 27, 29, 31, 33, 35, 37, 
40, 42, 44, 47, 49, 52, 54, 57, 59, 62, 65, 67, 70, 73, 76, 79, 82, 85, 88, 90, 93, 97, 100, 103, 
106, 109, 112, 115, 118, 121, 124 

  // https://www.daycounter.com/Calculators/Sine-Generator-Calculator.phtml 
}; 
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const unsigned waveformResolution = sizeof(sineWave) / sizeof(sineWave[0]); // = 256 
byte waveform[waveformResolution]; 
unsigned waveformPosition; 
 
// MARK: - Protocol 
struct Protocol { 
  unsigned long duration; // [s] 
  float frequency;        // [Hz], 0.0 < float frequency 
  float amplitude;        // [V],  0.0 < float amplitude < SIGNAL_VOLTAGE_AMPLITUDE 
}; 
Protocol protocol[PROTOCOL_MAX_STAGES]; 
byte protocolStages; 
bool protocolInProgress = false; 
 
// MARK: - Serial Communication 
const unsigned messageSize = 512; // Maximum amount of characters in one serial port message 
char receivedMessage[messageSize]; 
bool receivedProtocol = false; 
 
// MARK: - Button 
byte buttonState = HIGH, lastButtonState = HIGH; 
unsigned long lastDebounceTime, debounceDelay = 50; // debounce time; increase if the output flickers 
 
// MARK: - RGB LED 
struct Color { 
  byte red, green, blue; 
}; 
 
const struct Colors { 
  Color red = {255, 0, 0}; 
  Color green = {0, 255, 0}; 
  Color blue = {0, 0, 255}; 
  Color cyan = {0, 255, 255}; 
  Color magenta = {255, 0, 255}; 
  Color yellow = {255, 75, 0}; 
  Color white = {255, 255, 255}; 
} colors; 
 
// MARK: - Life Cycle 
void setup() { 
  setupPWM(); 
  setupTimer(); 
  setupSerial(); 
  setupButton(); 
  setupLED(); 
 
  loadProtocol(); 
  exportProtocol(); 
 
  setRGBColor(colors.cyan); 
} 
 
void loop() { 
  if (!protocolInProgress) { 
    receiveProtocol(); 
    if (receivedProtocol) { 
      receivedProtocolMessage(); 
      receivedProtocol = false; 
    } 
  } 
 
  if (BUTTON_IS_USED) { 
    handleButton(); 
  } 
} 
 
// MARK: - Setup Functions 
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void setupPWM() { 
  pinMode(WAVEFORM_PIN, OUTPUT); 
  // Set Pin 11 (WAVEFORM_PIN) PWM frequency to 31372.55 Hz, instead of default 490.20 Hz. 
  TCCR2B = TCCR2B & B11111000 | B00000001; 
} 
 
void setupTimer() { 
  ITimer1.init(); 
} 
 
void setupSerial() { 
  Serial.begin(115200); 
  Serial.print("READY"); 
} 
 
// MARK: - RGB LED 
void setupLED() { 
  if (RGB_LED_IS_USED) { 
    pinMode(RED_LIGHT_PIN, OUTPUT); 
    pinMode(GREEN_LIGHT_PIN, OUTPUT); 
    pinMode(BLUE_LIGHT_PIN, OUTPUT); 
  } 
} 
 
void setRGBColor(Color color) { 
  if (RGB_LED_IS_USED) { 
    analogWrite(RED_LIGHT_PIN, color.red); 
    analogWrite(GREEN_LIGHT_PIN, color.green); 
    analogWrite(BLUE_LIGHT_PIN, color.blue); 
  } 
} 
 
// MARK: - Button 
void setupButton() { 
  if (BUTTON_IS_USED) { 
    pinMode(BUTTON_PIN, BUTTON_PIN_MODE); 
  } 
} 
 
void handleButton() { 
  int reading = digitalRead(BUTTON_PIN); 
  if (reading != lastButtonState) { 
    lastDebounceTime = millis(); 
  } 
  if ((millis() - lastDebounceTime) > debounceDelay) { 
    byte state = buttonState; 
    buttonState = reading; 
    if (reading != state && reading == HIGH) { 
      buttonPressed(); 
    } 
  } 
  lastButtonState = reading; 
} 
 
void buttonPressed() { 
  Serial.println("Button pressed"); 
  if (protocolInProgress) { 
    cancelProtocol(); 
  } else { 
    runProtocol(); 
  } 
} 
 
// MARK: - Serial Communication Functions 
void receiveProtocol() { 
  static bool receiving = false; 
  static unsigned index; 
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  char startMarker = '<', endMarker = '>', receivedByte; 
  while (Serial.available() > 0 && !receivedProtocol) { 
    receivedByte = Serial.read(); 
 
    if (receiving) { 
      if (receivedByte != endMarker) { 
        receivedMessage[index] = receivedByte; 
        index++; 
        if (index >= messageSize) { 
          index = messageSize - 1; 
        } 
      } else { 
        receivedMessage[index] = '\0'; 
        receiving = false; 
        index = 0; 
        receivedProtocol = true; 
      } 
    } else if (receivedByte == startMarker) { 
      receiving = true; 
    } 
  } 
} 
 
void receivedProtocolMessage() { 
  parseProtocol(); 
  exportProtocol(); 
  saveProtocol(); 
  setRGBColor(colors.blue); 
  if (!BUTTON_IS_USED) { 
    runProtocol(); 
  } 
} 
 
void parseProtocol() { 
  char * token = receivedMessage; 
  unsigned int stages = 0; 
  for (int i = 0; token; i++) { 
    token = (i == 0) ? strtok(receivedMessage, ",") : strtok(NULL, ","); 
    if (!token) { 
      // When the token == NULL, we've reached the end of data. 
      continue; 
    } 
    unsigned long duration = atol(token); 
    token = strtok(NULL, ","); 
    float frequency = atof(token); 
    token = strtok(NULL, ";"); 
    float amplitude = atof(token); 
 
    protocol[i] = { duration, frequency, amplitude }; 
    stages++; 
  } 
  protocolStages = stages; 
} 
 
void exportProtocol() { 
  Serial.print("<"); 
  for (int i = 0; i < protocolStages; i++) { 
    unsigned long duration = protocol[i].duration; 
    float frequency = protocol[i].frequency; 
    float amplitude = protocol[i].amplitude; 
 
    if (i != 0) { 
      Serial.print(";"); 
    } 
    Serial.print(duration); 
    Serial.print(","); 
    Serial.print(frequency); 
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    Serial.print(","); 
    Serial.print(amplitude); 
  } 
  Serial.print(">"); 
} 
 
// MARK: - EEPROM Functions 
void saveProtocol() { 
  EEPROM.write(0, protocolStages); // Save number of stages to address 0 
 
  for (int i = 0; i < protocolStages; i++) { 
    Protocol stage = protocol[i]; 
 
    unsigned long duration = stage.duration; 
    float frequency = stage.frequency; 
    float amplitude = stage.amplitude; 
 
    int durationAddress = (sizeof(duration) + sizeof(frequency) + sizeof(amplitude)) * i + 1; 
    int frequencyAddress = durationAddress + sizeof(duration); 
    int amplitudeAddress = frequencyAddress + sizeof(frequency); 
 
    writeUnsignedLong(duration, durationAddress); 
    writeFloat(frequency, frequencyAddress); 
    writeFloat(amplitude, amplitudeAddress); 
  } 
} 
 
void loadProtocol() { 
  protocolStages = EEPROM.read(0); 
 
  for (int i = 0; i < protocolStages; i++) { 
    unsigned long duration; 
    float frequency; 
    float amplitude; 
 
    int durationAddress = (sizeof(duration) + sizeof(frequency) + sizeof(amplitude)) * i + 1; 
    int frequencyAddress = durationAddress + sizeof(duration); 
    int amplitudeAddress = frequencyAddress + sizeof(frequency); 
 
    duration = readUnsignedLong(durationAddress); 
    frequency = readFloat(frequencyAddress); 
    amplitude = readFloat(amplitudeAddress); 
 
    protocol[i] = { duration, frequency, amplitude }; 
  } 
} 
 
void writeUnsignedLong(unsigned long value, int startAddress) { 
  byte* bytes = (byte*) &value; 
  for (int i = 0; i < sizeof(unsigned long); i++) { 
    EEPROM.write(startAddress + i, bytes[i]); 
  } 
} 
 
unsigned long readUnsignedLong(int startAddress) { 
  const byte valueSize = sizeof(unsigned long); 
  union { 
    byte bytes[valueSize]; 
    unsigned long value; 
  } valueUnion; 
  for (int i = 0; i < valueSize; i++) { 
    valueUnion.bytes[i] = EEPROM.read(startAddress + i); 
  } 
  return valueUnion.value; 
} 
 
void writeFloat(float value, int startAddress) { 
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  byte* bytes = (byte*) &value; 
  for (int i = 0; i < sizeof(float); i++) { 
    EEPROM.write(startAddress + i, bytes[i]); 
  } 
} 
 
float readFloat(int startAddress) { 
  const byte valueSize = sizeof(float); 
  union { 
    byte bytes[valueSize]; 
    float value; 
  } valueUnion; 
  for (int i = 0; i < valueSize; i++) { 
    valueUnion.bytes[i] = EEPROM.read(startAddress + i); 
  } 
  return valueUnion.value; 
} 
 
// MARK: - Protocol Execution 
void runProtocol() { 
  protocolInProgress = true; 
  setRGBColor(colors.magenta); 
  for (int i = 0; i < protocolStages; i++) { 
    if (!protocolInProgress) { 
      return; // Protocol has been canceled. 
    } 
    Protocol stage = protocol[i]; 
    runStage(stage); 
  } 
  protocolFinished(true); 
} 
 
void runStage(Protocol stage) { 
  unsigned long duration = stage.duration; 
  float frequency = stage.frequency; 
  float amplitude = stage.amplitude; 
 
  // 1. Populate 'waveform' array with sine wave values modulated with amplitude. 
  float scaler = amplitude / SIGNAL_VOLTAGE_AMPLITUDE; 
  for (int i = 0; i < waveformResolution; i++) { 
    waveform[i] = byte(round(sineWave[i] * scaler)); 
  } 
 
  // 2. Start the timer interrupt process. 
  float timerFrequency = frequency * 2 * waveformResolution; 
  ITimer1.attachInterrupt(timerFrequency, tick); 
 
  // 3. Wait for the duration of the sequence, then stop the timer interrupt process. 
  unsigned long startTime = millis(), currentTime = millis(); 
  while (currentTime - startTime < duration * 1000) { 
    if (BUTTON_IS_USED) { 
      handleButton(); 
    } 
    currentTime = millis(); 
  } 
 
  ITimer1.disableTimer(); 
} 
 
void tick() { 
  byte instantaneousValue = waveform[waveformPosition]; 
  analogWrite(WAVEFORM_PIN, instantaneousValue); 
  waveformPosition = (waveformPosition + 1) % waveformResolution; 
  // Serial.println(instantaneousValue); -- to check sinewave using serial plotter 
} 
 
void cancelProtocol() { 
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  ITimer1.disableTimer(); 
  waveformPosition = 0; 
  protocolFinished(false); 
} 
 
void protocolFinished(bool finished) { 
  protocolInProgress = false; 
  if (finished) { 
    setRGBColor(colors.green); 
  } 
  else { 
    setRGBColor(colors.red); 
  } 
  analogWrite(WAVEFORM_PIN, 0); 
} 


