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Abstract: 
Within the statistical mechanical description or the phospholipid bilayer membrane, each 
monolayer is described as composed of patches containing very many inclusions that are 
characterized by intrinsic curvatures. A patch is subjected to local membrane curvature 
whereas summing up the free energies of the patches yields the free energy of the mem-
brane. The origin of the single inclusion energy is the mismatch between the intrinsic cur-
vature of the inclusion and the local curvature of the membrane, however, also direct in-
teractions between inclusions contribute to the free energy. Here we upgrade the descrip-
tion by elaborating direct interactions between inclusions. We assume that the direct in-
teractions are subject to van der Waals forces acting on the interfaces between the inclu-
sion and its nearest neighbours. The expression for the interaction depends on the geom-
etry of the inclusions, distance between them and Hamaker constant. The estimated direct 
interaction between inclusions of the size of small membrane rafts (20 nm) distanced for 
0.2 nm with Hamaker constant 710-21J is W1800 kT.  
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1. Introduction 

Theoretical description of biological membranes provides an important link between 
physical laws and features, observed experimentally in complex systems. Previous studies 
have shown, that the observable shape of the membrane-enclosed structures can be 
explained by minimization of the membrane free energy at relevant constraints (e.g. 
prescribed membrane area, enclosed volume, average mean curvature, average mean 
curvature deviator) (Kralj-Iglič et al., 2020 with included references). The derivation of the 
free energy is based on the mismatch of the curvature tensor of an infinitesimal membrane 
element and the curvature tensor of this element in its intrinsic state (Kralj-Iglič et al., 2020). 
For anisotropic constituents there may be also contribution of the orientation of the 
inclusion with respect to the principal axes system of the membrane (Kralj-Iglič et al., 2020). 
The fluid crystal mosaic model (Kralj-Iglič, 2012) emphasizes the effect of orientational 
ordering of membrane constituents which becomes important in highly anisotropically 
curved regions such as in the narrow necks (Kralj-Iglič et al., 2006). Figure 1 shows that 
considering the orientational ordering of phospholipid molecules becomes noticable in the 
neck (Panes B) which may considerable impact the equilibrium free energy of the entire 
vesicle and therefore indicate the direction of spontaneous change of the shape (Kralj-Iglič 
et al., 2006). In the calculation of the results presented in Figure 1 the direct interactions 
between membrane constituents were taken into account as estimated by the van der 
Waals interaction between phospholipid molecules. It was shown that the direct 
interactions acted synergistically with the curvature mismatch and that their contributions 
were of the same order of magnitude (kT) where k in the Boltzmann constant and T is the 
temperature (Kralj-Iglič et al., 2006).  

 

 

 

 

 

 

 

 

Figure 1. A: Equilibrium shape (shape of minimal free energy of the membrane) of a vesicle enclosed by a phospholipi bilayer 

membrane as calculated by taking into account orientational ordering of phospholipid molecules. B: The corresponding average 

orientation of the molecules in the neck (detail from Panel A). The model assumes two possible orientations (with minimal and 

maximal energy) and value 0.5 indicates that half of the constituents are in each of these two states; value 1 indicates that all of the 

constituents are in the energetically more favourable state. Adapted from (Kralj-Iglič et al., 2006). 

However, in (Kralj-Iglič et al., 2006) the focus was on the orientational ordering and 
curvature mismatch of lipid molecules. The model should be further developed. Here it is 
taken into account that the membrane may be viewed as composed of inclusions 
(complexes of molecules). We focus on the estimation of the direct interactions between 
the membrane inclusions based on the van der Waals interaction. The derivation of the 
interaction between two walls, of them one with infinitely extending surface and the other 
with finite surface area is implemented to estimate the energy of direct interaction of the 
membrane inclusion with its nearest neighbors.  
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2.1. Interaction between a small entity and an infinitely extending wall  

To calculate potential of the interaction between a small entity and an infinitely extending 
wall separated by a perpendicular distance D (Figure 2A), the entity is represented by a 
black dot and the wall is imagined to be composed of thin slices of thickness dx. Further, 
the slice is imagined to be composed of rings of the area dS = 2r dr, their radii extending 
from 0 to  (Figure 2).                                                             

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Illustration of the derivation of A: the van der Waals interaction between a wall and a small entity, B: the van der Waals 

interaction between an infinitely extending wall and a wall with finite surface and infinite length. 

The entities within the ring are equally distanced from the chosen x. Following Israelaschvili (2011), 

it is taken that the potential V at point (x,0,0) created by a small patch within the ring of the plate 

with radius r (Figure 1, red spot) containing dN entities is, 

dV = - CvdW R-6 dN ,             (1) 

where (Figure 1) 

R2 = r2 + x2              (2) 

and CvdW is a constant. Considering Eqs. (1) and (2),  

dV = - CvdW (r2 + x2)-3 dN .            (3) 

To include the contributions of the entire wall, the potentials of all thin rings composing the plate 

are summed and then the contributions of all the slices are summed, 

V(D) = - x dx r CvdW (r2 + x2)-3 dN           (4) 

with 

dN = n 2rdr,             (5) 

and n the number density of the entities composing the wall. Integration is performed from r = 0 to 

r =  and from x = - to D. 

Inserting Eq.(5) into Eq.(4) yields 
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V(D) = -  x dx r CvdW (r2 + x2)-3 n 2r dr .          (6) 

We introduce a new variable 

u = r2 + x2              (7) 

and the corresponding differential 

du = 2r dr              (8) 

with the boundaries  

u(r = 0) = x2              (9) 

and 

u(r = ) =                    (10)  

to obtain 

V(D) = -  x dx (1/2)  n CvdW x-4 .               (11)                    

Integration over x within the boundaries x = -  to D gives the energy of the interaction between a 

small entity and a wall,  

V(D) = - CvdW n  D-3 /6 .                (12) 

  

2.3. Interaction between a wall with a finite surface and a wall with an infinite surface 

One of the walls extends infinitely in the y and z directions and the other is parallel to it, but of finite 

dimensions in the y and z directions, attaining the surface area S. It is imagined that the wall with 

the finite surface is composed of thin slices with thickness dx. The number of the entities composing 

a slice is 

dN = n S dx ,                  (13) 

where it is taken that the number density of the entities of the wall with the finite surface is the same 

as the number density of the entities of the wall with the infinite surface. Any point within the wall 

that is at the perpendicular distance D from the wall with infinite surface contributes the same to the 

energy of interaction. The contributions to the potential of the interaction are summed over the slices 

from x = D to x = ,  

Vwall-wall(D) = x n V(x) S dx .               (14)   

Insertion of Eq.(12) into Eq.(14) yields 

Vwall-wall(D) = - x (1/6) CvdW n2  S x-3  dx  .              (15) 

The integration is performed from x =  to x = D to yield the energy of the interaction between a wall 

with finite surface area and a wall with infinite surface area (Israelaschvili, 2011),  

VvdW (D) = - CvdW n2  S D-2/12 .                (16) 

 

2.4. Interaction between two membrane inclusions 

Within the model, membrane can be considered as composed of inclusions with given principal cur-

vatures C1 = 1/R1 and C2 = 1/R2 (Figure 3A). Each inclusion shares interfaces with 4 nearest neighbors 

(Figure 3B). In the model, the direct interaction between inclusions is described by the van der Waals 

interaction between two surfaces. The surfaces of the walls are taken to be parallel (Figure 2). The 

surface areas of the interfaces are finite, however, as the van der Waals interaction falls off with 6th 

order of the distance between two entities, the smaller surface of the two interacting surfaces in the 

potential VvdW (D) for small D largely determines the potential, therefore Eq.(16) is applied. The po-

tential of the interaction of the inclusion with its 4 nearest neighbors is 

W = 4 Vwall-wall (D)  .                (17) 

Considering Eq. (16),  
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W = - CvdW n2  S D-2/3  .                (18) 

The product CvdW n2 2 is Hamaker constant A (Hamaker, 1938), 

A = CvdW n2 2 .                   (19) 

Considering Eqs.(18) and (19), we get 

W = ASD-2/3 .                 (20) 

 

  

 

 

       

 

 

 

 

 

 

 

 

 

 

Figure 3. A: Within the model, the membrane patch is composed of inclusions with certain principal curvatures C1 = 1/R1 and C2 = 

1/R2. B: Interfaces between inclusions are subjected to inter-surface interactions. The inclusion is viewed as composed of molecules. 

Each inclusion interacts with its four nearest neighbours.  

Hamaker constant for lipid bilayer composed of DPPC was estimated as A = 6.910-21J while for DPPE 

it was 7.510-21J (Kienle et al., 2014). The size of the inclusion is estimated by the size of the lipid raft 

(20-200 nm) (Pile, 2008). The distance between the inclusions is estimated by the void between the 

phospholipid tails. Roughly, the C-C bond attains length below d = 0.2 nm (Ishigaki et al., 2018), so 

the distance D was estimated to be smaller than 0.2 nm.  

The estimated direct interaction between inclusions in the lipid bilayer membrane is calculated by 

using Eq.(20) subject to the above data (A = 710-21J, S = 400 nm2 (for lower limit of the rafts of the 

size 20 nm) and D = 0.2 nm), 

W  750010-21J                     (21)  

which is at T = 300 K 

W  1800 kT  .                 (22) 

The effect of the van der Waals interactions on the membrane shape was previously estimated by 

considering the phospholipid molecules as inclusions (Kralj-Iglič et al., 2006). It was assumed that 

the molecules were distributed in a quadratic lattice. The nearest tails of the neighbouring molecules 

were described as cylinders were taken into account. The estimated energy of the interaction was W 

 1 kT (Kralj-Iglič et al., 2006). Although already the estimation by phospholipid molecules showed 

that the direct interactions contributed noticeable to the orientational ordering (Kralj-Iglič et al., 

2006), it follows from the above that describing the membrane as composed of inclusions with in-

trinsic principal curvatures gives the effect of the direct interactions that may be 3 orders of magni-

tude higher. These estimations suggest a possibility of the major contribution of the van der Waals 

forces within the hydrocarbon region of the membrane to the membrane free energy. This is in ac-

cordance with estimation of energy contributions of dipole-dipole interaction of the headgroups by 
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Garcia et al. (2019) who found the dipole-dipole energy of around 0.15 kJ mol–1 while the experimen-

tally determined total enthalpy change for a gel-to-liquid-crystalline phase transition of dimyristoyl 

phosphatidyl choline of 23–29 kJ mol–1 suggesting that dipole–dipole interactions between phospha-

tidyl choline dipoles of the head group in the plane of the membrane are likely to play only minor 

role in the energetics of the gel-to-liquid crystal phase transition (Garcia et al., 2019). 

The term “membrane inclusion” was previously used to describe large molecules embedded in the 

lipid bilayer membranes (Marcelja, 1976; Owicki & McConnell, 1979; Aranda-Espinoza et al., 1996). 

Here, the complexes of molecules that compose the membrane patch are taken as the inclusions. 

Such model was developed based on previous theoretical results considering statistical physical de-

scription of membrane (Kralj-Iglič et al., 1996; Kralj-Iglič et al., 1999) and of the electric double layer 

(Kralj-Iglič & Iglič, 1996).  
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